Critical role for Fas-associated death domain-like interleukin-1-converting enzyme-like inhibitory protein in anoikis resistance and distant tumor formation.

نویسندگان

  • Imtiaz A Mawji
  • Craig D Simpson
  • Rose Hurren
  • Marcela Gronda
  • Moyo A Williams
  • Jorge Filmus
  • James Jonkman
  • Ralph S Da Costa
  • Brian C Wilson
  • Michael P Thomas
  • John C Reed
  • Gennadi V Glinsky
  • Aaron D Schimmer
چکیده

BACKGROUND Normal epithelial cells undergo anoikis, or apoptosis on loss of anchorage to the extracellular matrix, by initiating the death receptor pathway of caspase activation. However, malignant epithelial cells with metastatic potential resist anoikis and can survive in an anchorage-independent fashion. We hypothesized that c-Fas-associated death domain-like interleukin-1-converting enzyme-like inhibitory protein (FLIP), an endogenous inhibitor of death receptor signaling, may suppress anoikis. METHODS We assessed viability and apoptosis of PPC-1 prostate cancer cells cultured in adherent and suspension conditions using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt and Annexin V staining assays. Expression of the death receptor Fas and activation of caspase 8 were measured using flow cytometry. Expression of Fas ligand was measured by reverse transcription-polymerase chain reaction. FLIP protein expression was measured by immunoblotting. Small-molecule inhibitors of FLIP (including the death receptor sensitizer 5809354) and small-interfering (si) RNA directed against FLIP were used to assess the effects of FLIP inhibition on anoikis of prostate cancer cells in vitro and in vivo. All statistical tests were two-sided. RESULTS PPC-1 cells cultured in suspension resisted anoikis, despite increased expression of Fas (0 versus 8 hours, mean relative percent expression = 100% versus 135%, difference = 35%, 95% confidence interval [CI] = 10% to 61%; P = .02) and Fas L (0 versus 24 hours, mean relative percent expression = 100% versus 208%, difference = 108%, 95% CI = 18% to 197%; P = .02). Knockdown of FLIP expression by siRNA or treatment with 5809354 sensitized prostate cancer cells to anoikis (control siRNA versus FLIP siRNA at 10 nM, mean relative percent viability = 95% versus 51%, difference = 44%, 95% CI = 34% to 54%; P<.001; control versus 5809354 at 20 microM, mean relative percent viability = 96% versus 52%, difference = 44%, 95% CI = 13% to 75%; P = .015). Inhibition of FLIP expression specifically activated caspase 8 in PPC-1 cells grown in suspension but not adherent conditions and decreased the metastatic potential of circulating PPC-1 cells in vivo. CONCLUSIONS FLIP may be a suppressor of anoikis and therefore a possible target for antimetastatic therapeutic strategies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

cMet and Fas receptor interaction inhibits death-inducing signaling complex formation in endothelial cells.

Fas receptor is constitutively expressed on endothelial cells; however, these cells are highly resistant to Fas-mediated apoptosis. In this study, we examined death-inducing signaling complex (DISC) formation in endothelial cells after Fas receptor stimulation. Nonfunctional DISC formation was observed in human umbilical vein endothelial cells (HUVECs). Fas-associated death domain (FADD) and la...

متن کامل

Flice-Inhibitory Protein Expression during Macrophage Differentiation Confers Resistance to FAS-Mediated Apoptosis

Macrophages differentiated from circulating peripheral blood monocytes are essential for host immune responses and have been implicated in the pathogenesis of rheumatoid arthritis and atherosclerosis. In contrast to monocytes, macrophages are resistant to Fas-induced cell death by an unknown mechanism. FLICE (Fas-associated death domain-like interleukin 1beta-converting enzyme)-inhibitory prote...

متن کامل

Adhesion-mediated intracellular redistribution of c-Fas-associated death domain-like IL-1-converting enzyme-like inhibitory protein-long confers resistance to CD95-induced apoptosis in hematopoietic cancer cell lines.

Evasion of immune surveillance is a key step in malignant progression. Interactions between transformed hematopoietic cells and their environment may initiate events that confer resistance to apoptosis and facilitate immune evasion. In this report, we demonstrate that beta(1) integrin-mediated adhesion to fibronectin inhibits CD95-induced caspase-8 activation and apoptosis in hematologic tumor ...

متن کامل

Metabolic inhibitors sensitize for CD95 (APO-1/Fas)-induced apoptosis by down-regulating Fas-associated death domain-like interleukin 1-converting enzyme inhibitory protein expression.

Protein or RNA synthesis inhibitors are known to sensitize some resistant cells for death receptor-induced apoptosis. However, the molecular mechanism(s) involved in sensitization have not yet been defined exactly. Here, we report that metabolic inhibitors such as cycloheximide (CHX) or actinomycin D (ActD) sensitize for CD95-induced apoptosis by strongly down-regulating FLIP and RIP expression...

متن کامل

Enhanced expression of Fas-associated death domain-like IL-1-converting enzyme (FLICE)-inhibitory protein induces resistance to Fas-mediated apoptosis in activated mast cells.

Mast cells play a critical role in host immune responses and are implicated in the pathogenesis of allergic inflammation. Though mouse mast cell line MC/9 expresses cell surface Fas Ag and is sensitive to Fas-induced apoptosis, activated MC/9 cells are resistant to Fas-induced cell death by cross-linking of FcepsilonRI or FcgammaR. Fas-associated death domain-like IL-1-converting enzyme (FLICE)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the National Cancer Institute

دوره 99 10  شماره 

صفحات  -

تاریخ انتشار 2007